طراحی و آموزش شبکه‏ های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت‏ های موازی

نویسندگان

فردین احمدی زر

fardin ahmadizar سنندج-دانشگاه کردستان- کوی اساتید- بلوک 38 خه‏ بات سلطانیان

khabat soltanian دانشگاه کردستان فردین اخلاقیان‏ طاب

fardin akhlaghiantab دانشگاه کردستان

چکیده

کاربرد شبکه‏‏ های عصبی مصنوعی در حوزه‏ هایی از قبیل دسته‏ بندی تصاویر و سیگنال های صوتی مؤید توانایی این ابزار قدرتمند هوش مصنوعی در حل مسائل دنیای امروز است. طراحی و آموزش شبکه‏ های عصبی همواره یک فرآیند زمان‏بر و مشکل بوده است. یک مدل عصبی مناسب باید بتواند الگوی داده‏ های آموزشی را فراگرفته و نیز قابلیت تعمیم داشته باشد. در این مقاله، از جمعیت‏ های موازی برای طراحی معماری شبکه عصبی و همچنین از استراتژی تکاملی برای آموزش آن استفاده شده است، به‏ طوریکه در هر جمعیت شبکه ای با معماری خاصی تکامل می‏ یابد. با کمک یک روش انتخاب دومعیاره مبتنی بر میزان خطا و پیچیدگی شبکه‏ ها، الگوریتم ارائه شده قادر است شبکه‏ های ساده با قابلیت تعمیم بالا تولید کند. برای ارزیابی کارایی الگوریتم پیشنهادی از 7 مسأله استاندارد دسته‏ بندی استفاده شده است. روش ارائه شده با روش‏های تکامل اوزان، تکامل معماری و نیز الگوریتم‏های تکامل همزمان معماری و اوزان مورد مقایسه قرار گرفته است. نتایج آزمایش‏ها کارایی و پایداری این روش را نسبت به روش‏های مورد مقایسه نشان می‏دهد. در این مقاله، همچنین تأثیر وجود جمعیت‏های موازی، روش انتخاب دومعیاره و نیز عملگر ادغام در الگوریتم ارائه شده مورد بررسی قرار گرفته است. از مزایای اصلی این روش بهره‏ گیری از پردازش موازی به وسیله جمعیت‏های مستقل است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روندیابی سیل رودها با بهره وری از شبیه های شبکه ی عصبی مصنوعی تکاملی

یکی از روش‌های پیش‌بینی سیل در رودخانه‌ها به منظور مدیریت و کنترل سیل در آن، روندیابی سیل می‌باشد. امروزه تکنیک جدید استفاده از مدل شبکه‌های عصبی مصنوعی تکاملی(EANN) که مبتنی بر هوش مصنوعی می‌باشد، کاربرد گسترده‌ای در زمینه‌های مختلف علمی به‌ویژه مهندسی آب پیدا کرده است. در این تحقیق به روندیابی سیل در رودخانه کارون، بازه اهواز- فارسیات، با استفاده از مدل‌های شبکه عصبی مصنوعی تکاملی پیش رونده (...

متن کامل

استفاده از سری های زمانی در شبکه های عصبی مصنوعی تکاملی به منظور ارزیابی آسیب پذیری در قاب بتنی خمشی

پس از وقوع یک زلزله ، تصمیم گیری سریع در مورد ایمنی ساختمان،امکان ادامه بهره برداری از یکساختمان و تعیین موقعیت و میزان خرابی مورد نظر،بسیار مهم و حیاتی می باشد. امروزه تکنیک جدیداستفاده از مدل شبکه های عصبی مصنوعی تکاملی که مبتنی بر هوش مصنوعی می باشد کاربردگسترده ای در زمینه های مختلف علمی به ویژه مهندسی سازه و زلزله پیدا کرده است. در این مقاله یک1/5 تحلیل دینامیکی غیرخطی شده g 0/1 تا g قاب خ...

متن کامل

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

طراحی مدل پیش بینی ورشکستگی شرکت ها به وسیله شبکه های عصبی فازی (مطالعه موردی:شرکت های بورس اوراق بهادار تهران)

در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای  شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
پردازش علائم و داده ها

جلد ۱۳، شماره ۱، صفحات ۱۰۱-۱۱۴

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023